Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Biol Cell ; : mbcE24010044, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598294

RESUMO

The symbiotic relationship between the bioluminescent bacterium Vibrio fischeri and the bobtail squid Euprymna scolopes serves as a valuable system to investigate bacterial growth and peptidoglycan (PG) synthesis within animal tissues. To better understand the growth dynamics of V. fischeri in the crypts of the light-emitting organ of its juvenile host, we showed that, after the daily dawn-triggered expulsion of most of the population, the remaining symbionts rapidly proliferate for about 6 h. At that point the population enters a period of extremely slow growth that continues throughout the night until the next dawn. Further, we found that PG synthesis by the symbionts decreases as they enter the slow-growing stage. Surprisingly, in contrast to the most mature crypts (i.e., Crypt 1) of juvenile animals, most of the symbiont cells in the least mature crypts (i.e., Crypt 3) were not expelled and, instead, remained in the slow-growing state throughout the day, with almost no cell division. Consistent with this observation, the expression of the gene encoding the PG-remodeling enzyme, L,D-transpeptidase (LdtA), was greatest during the slowly growing stage of Crypt 1 but, in contrast, remained continuously high in Crypt 3. Finally, deletion of the ldtA gene resulted in a symbiont that grew and survived normally in culture, but was increasingly defective in competing against its parent strain in the crypts. This result suggests that remodeling of the PG to generate additional 3-3 linkages contributes to the bacterium's fitness in the symbiosis, possibly in response to stresses encountered during the very slow-growing stage. [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text].

2.
PLoS Biol ; 22(4): e3002571, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38578728

RESUMO

All animals and plants likely require interactions with microbes, often in strong, persistent symbiotic associations. While the recognition of this phenomenon has been slow in coming, it will impact most, if not all, subdisciplines of biology.


Assuntos
Plantas , Simbiose , Animais , Biologia
3.
Philos Trans R Soc Lond B Biol Sci ; 379(1901): 20230060, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38497258

RESUMO

At a rapid pace, biologists are learning the many ways in which resident microbes influence, and sometimes even control, their hosts to shape both health and disease. Understanding the biochemistry behind these interactions promises to reveal completely novel and targeted ways of counteracting disease processes. However, in our protocols and publications, we continue to describe these new results using a language that originated in a completely different context. This language developed when microbial interactions with hosts were perceived to be primarily pathogenic, as threats that had to be vanquished. Biomedicine had one dominating thought: winning this war against microorganisms. Today, we know that beyond their defensive roles, host tissues, especially epithelia, are vital to ensuring association with the normal microbiota, the communities of microbes that persistently live with the host. Thus, we need to adopt a language that better encompasses the newly appreciated importance of host-microbiota associations. We also need a language that frames the onset and progression of pathogenic conditions within the context of the normal microbiota. Such a reimagined lexicon should make it clear, from the very nature of its words, that microorganisms are primarily vital to our health, and only more rarely the cause of disease. This article is part of the theme issue 'Sculpting the microbiome: how host factors determine and respond to microbial colonization'.


Assuntos
Doenças Transmissíveis , Microbiota , Humanos , Simbiose , Interações Microbianas , Aprendizagem
4.
bioRxiv ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38168341

RESUMO

Organs that pump fluids by the coordinated beat of motile cilia through the lumen are integral to animal physiology. Such organs include the human airways, brain ventricles, and reproductive tracts. Although cilia organization and duct morphology vary drastically in the animal kingdom, ducts are typically classified as either carpet or flame designs. The reason behind this dichotomy and how duct design relates to fluid pumping remain unclear. Here, we demonstrate that two structural parameters -- lumen diameter and cilia-to-lumen ratio -- organize the observed duct diversity into a continuous spectrum that connects carpets to flames across all animal phyla. Using a unified fluid model, we show that carpet and flame designs maximize flow rate and pressure generation, respectively. We propose that convergence of ciliated organ designs follows functional constraints rather than phylogenetic distance, along with universal design rules for ciliary pumps.

5.
mBio ; : e0109123, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37975666

RESUMO

There is concern that the time taken to publish academic papers in microbiological science has significantly increased in recent years. While the data do not specifically support this, evidence suggests that editors are having to invite more and more reviewers to identify those willing to perform peer review.

6.
Commun Biol ; 6(1): 896, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37653089

RESUMO

The dominant benthic primary producers in coral reef ecosystems are complex holobionts with diverse microbiomes and metabolomes. In this study, we characterize the tissue metabolomes and microbiomes of corals, macroalgae, and crustose coralline algae via an intensive, replicated synoptic survey of a single coral reef system (Waimea Bay, O'ahu, Hawaii) and use these results to define associations between microbial taxa and metabolites specific to different hosts. Our results quantify and constrain the degree of host specificity of tissue metabolomes and microbiomes at both phylum and genus level. Both microbiome and metabolomes were distinct between calcifiers (corals and CCA) and erect macroalgae. Moreover, our multi-omics investigations highlight common lipid-based immune response pathways across host organisms. In addition, we observed strong covariation among several specific microbial taxa and metabolite classes, suggesting new metabolic roles of symbiosis to further explore.


Assuntos
Antozoários , Microbiota , Alga Marinha , Animais , Recifes de Corais , Simbiose , Metaboloma
7.
iScience ; 26(7): 107091, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37426346

RESUMO

Light organs (LO) with symbiotic bioluminescent bacteria are hallmarks of many bobtail squid species. These organs possess structural and functional features to modulate light, analogous to those found in coleoid eyes. Previous studies identified four transcription factors and modulators (SIX, EYA, PAX6, DAC) associated with both eyes and light organ development, suggesting co-option of a highly conserved gene regulatory network. Using available topological, open chromatin, and transcriptomic data, we explore the regulatory landscape around the four transcription factors as well as genes associated with LO and shared LO/eye expression. This analysis revealed several closely associated and putatively co-regulated genes. Comparative genomic analyses identified distinct evolutionary origins of these putative regulatory associations, with the DAC locus showing a unique topological and evolutionarily recent organization. We discuss different scenarios of modifications to genome topology and how these changes may have contributed to the evolutionary emergence of the light organ.

8.
Microbiome ; 11(1): 68, 2023 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-37004104

RESUMO

BACKGROUND: Many animals and plants acquire their coevolved symbiotic partners shortly post-embryonic development. Thus, during embryogenesis, cellular features must be developed that will promote both symbiont colonization of the appropriate tissues, as well as persistence at those sites. While variation in the degree of maturation occurs in newborn tissues, little is unknown about how this variation influences the establishment and persistence of host-microbe associations. RESULTS: The binary symbiosis model, the squid-vibrio (Euprymna scolopes-Vibrio fischeri) system, offers a way to study how an environmental gram-negative bacterium establishes a beneficial, persistent, extracellular colonization of an animal host. Here, we show that bacterial symbionts occupy six different colonization sites in the light-emitting organ of the host that have both distinct morphologies and responses to antibiotic treatment. Vibrio fischeri was most resilient to antibiotic disturbance when contained within the smallest and least mature colonization sites. We show that this variability in crypt development at the time of hatching allows the immature sites to act as a symbiont reservoir that has the potential to reseed the more mature sites in the host organ when they have been cleared by antibiotic treatment. This strategy may produce an ecologically significant resiliency to the association. CONCLUSIONS: The data presented here provide evidence that the evolution of the squid-vibrio association has been selected for a nascent organ with a range of host tissue maturity at the onset of symbiosis. The resulting variation in physical and chemical environments results in a spectrum of host-symbiont interactions, notably, variation in susceptibility to environmental disturbance. This "insurance policy" provides resiliency to the symbiosis during the critical period of its early development. While differences in tissue maturity at birth have been documented in other animals, such as along the infant gut tract of mammals, the impact of this variation on host-microbiome interactions has not been studied. Because a wide variety of symbiosis characters are highly conserved over animal evolution, studies of the squid-vibrio association have the promise of providing insights into basic strategies that ensure successful bacterial passage between hosts in horizontally transmitted symbioses. Video Abstract.


Assuntos
Aliivibrio fischeri , Vibrio , Animais , Aliivibrio fischeri/genética , Simbiose/fisiologia , Decapodiformes/microbiologia , Decapodiformes/fisiologia , Desenvolvimento Embrionário , Mamíferos
9.
Proc Natl Acad Sci U S A ; 119(49): e2214150119, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36442100

RESUMO

Although lacking an adaptive immune system and often living in habitats with dense and diverse bacterial populations, marine invertebrates thrive in the presence of potentially challenging microbial pathogens. However, the mechanisms underlying this resistance remain largely unexplored and promise to reveal novel strategies of microbial resistance. Here, we provide evidence that a mud-dwelling clam, Meretrix petechialis, synthesizes, stores, and secretes the antibiotic erythromycin. Liquid chromatography coupled with mass spectrometry, immunocytochemistry, fluorescence in situ hybridization, RNA interference, and enzyme-linked immunosorbent assay revealed that this potent macrolide antimicrobial, thought to be synthesized only by microorganisms, is produced by specific mucus-rich cells beneath the clam's mantle epithelium, which interfaces directly with the bacteria-rich environment. The antibacterial activity was confirmed by bacteriostatic assay. Genetic, ontogenetic, phylogenetic and genomic evidence, including genotypic segregation ratios in a family of full siblings, gene expression in clam larvae, phylogenetic tree, and synteny conservation in the related genome region further revealed that the genes responsible for erythromycin production are of animal origin. The detection of this antibiotic in another clam species showed that the production of this macrolide is not exclusive to M. petechialis and may be a common strategy among marine invertebrates. The finding of erythromycin production by a marine invertebrate offers a striking example of convergent evolution in secondary metabolite synthesis between the animal and bacterial domains. These findings open the possibility of engineering-animal tissues for the localized production of an antibacterial secondary metabolite.


Assuntos
Bivalves , Eritromicina , Animais , Eritromicina/farmacologia , Filogenia , Hibridização in Situ Fluorescente , Bivalves/genética , Antibacterianos/farmacologia , Macrolídeos
10.
Front Cell Dev Biol ; 10: 974213, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36340026

RESUMO

The Hawaiian bobtail squid, Euprymna scolopes, harvests its luminous symbiont, Vibrio fischeri, from the surrounding seawater within hours of hatching. During embryogenesis, the host animal develops a nascent light organ with ciliated fields on each lateral surface. We hypothesized that these fields function to increase the efficiency of symbiont colonization of host tissues. Within minutes of hatching from the egg, the host's ciliated fields shed copious amounts of mucus in a non-specific response to bacterial surface molecules, specifically peptidoglycan (PGN), from the bacterioplankton in the surrounding seawater. Experimental manipulation of the system provided evidence that nitric oxide in the mucus drives an increase in ciliary beat frequency (CBF), and exposure to even small numbers of V. fischeri cells for short periods resulted in an additional increase in CBF. These results indicate that the light-organ ciliated fields respond specifically, sensitively, and rapidly, to the presence of nonspecific PGN as well as symbiont cells in the ambient seawater. Notably, the study provides the first evidence that this induction of an increase in CBF occurs as part of a thus far undiscovered initial phase in colonization of the squid host by its symbiont, i.e., host recognition of V. fischeri cues in the environment within minutes. Using a biophysics-based mathematical analysis, we showed that this rapid induction of increased CBF, while accelerating bacterial advection, is unlikely to be signaled by V. fischeri cells interacting directly with the organ surface. These overall changes in CBF were shown to significantly impact the efficiency of V. fischeri colonization of the host organ. Further, once V. fischeri has fully colonized the host tissues, i.e., about 12-24 h after initial host-symbiont interactions, the symbionts drove an attenuation of mucus shedding from the ciliated fields, concomitant with an attenuation of the CBF. Taken together, these findings offer a window into the very first interactions of ciliated surfaces with their coevolved microbial partners.

11.
Symbiosis ; 87(1): 31-43, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-36177150

RESUMO

In symbioses established through horizontal transmission, evolution has selected for mechanisms that promote the recruitment of symbionts from the environment. Using the binary association between the Hawaiian bobtail squid, Euprymna scolopes, and its symbiont, Vibrio fischeri, we explored the first step of symbiont enrichment around sites where V. fischeri cells will enter host tissues. Earlier studies of the system had shown that, within minutes of hatching in natural seawater, ciliated epithelia of the nascent symbiotic tissue secrete a layer of mucus in response to exposure to the cell-wall biomolecule peptidoglycan (PGN) from non-specific bacterioplankton. We hypothesized that a peptidoglycan recognition protein, EsPGRP4, is the receptor that mediates host mucus secretion by sensing the environmental PGN; earlier studies of this protein family had shown that this is the only member predicted to behave as a membrane receptor. Immunocytochemistry localized EsPGRP4 to the superficial ciliated fields of the juvenile organ. We found that production of EsPGRP4 increased over the first 48 h after hatching if the light organ remained uncolonized. When colonized by V. fischeri, the levels of the protein in light-organ tissue remained similar to that of hatchling organs. Pharmacologically curing the initially colonized light organ with antibiotics resulted in return of EsPGRP4 production to levels similar to light organs that had remained uncolonized since hatching. Furthermore, we found that preincubation of the tissues with an EsPGRP4 antibody decreased light organ mucus production and colonization. These findings provide evidence of an innate mechanism that underlies a crucial first step in the horizontal recruitment of bacterial symbionts.

12.
Proc Natl Acad Sci U S A ; 119(33): e2204146119, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35960845

RESUMO

Microbes are found in nearly every habitat and organism on the planet, where they are critical to host health, fitness, and metabolism. In most organisms, few microbes are inherited at birth; instead, acquiring microbiomes generally involves complicated interactions between the environment, hosts, and symbionts. Despite the criticality of microbiome acquisition, we know little about where hosts' microbes reside when not in or on hosts of interest. Because microbes span a continuum ranging from generalists associating with multiple hosts and habitats to specialists with narrower host ranges, identifying potential sources of microbial diversity that can contribute to the microbiomes of unrelated hosts is a gap in our understanding of microbiome assembly. Microbial dispersal attenuates with distance, so identifying sources and sinks requires data from microbiomes that are contemporary and near enough for potential microbial transmission. Here, we characterize microbiomes across adjacent terrestrial and aquatic hosts and habitats throughout an entire watershed, showing that the most species-poor microbiomes are partial subsets of the most species-rich and that microbiomes of plants and animals are nested within those of their environments. Furthermore, we show that the host and habitat range of a microbe within a single ecosystem predicts its global distribution, a relationship with implications for global microbial assembly processes. Thus, the tendency for microbes to occupy multiple habitats and unrelated hosts enables persistent microbiomes, even when host populations are disjunct. Our whole-watershed census demonstrates how a nested distribution of microbes, following the trophic hierarchies of hosts, can shape microbial acquisition.


Assuntos
Ecossistema , Microbiota , Plantas , Animais , Bactérias , Plantas/microbiologia
15.
Biophys J ; 121(13): 2653-2662, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35398019

RESUMO

Symbiotic bacteria often navigate complex environments before colonizing privileged sites in their host organism. Chemical gradients are known to facilitate directional taxis of these bacteria, guiding them toward their eventual destination. However, less is known about the role of physical features in shaping the path the bacteria take and defining how they traverse a given space. The flagellated marine bacterium Vibrio fischeri, which forms a binary symbiosis with the Hawaiian bobtail squid, Euprymna scolopes, must navigate tight physical confinement during colonization, squeezing through a tissue bottleneck constricting to ∼2 µm in width on the way to its eventual home. Using microfluidic in vitro experiments, we discovered that V. fischeri cells alter their behavior upon entry into confined space, straightening their swimming paths and promoting escape from confinement. Using a computational model, we attributed this escape response to two factors: reduced directional fluctuation and a refractory period between reversals. Additional experiments in asymmetric capillary tubes confirmed that V. fischeri quickly escape from confined ends, even when drawn into the ends by chemoattraction. This avoidance was apparent down to a limit of confinement approaching the diameter of the cell itself, resulting in a balance between chemoattraction and evasion of physical confinement. Our findings demonstrate that nontrivial distributions of swimming bacteria can emerge from simple physical gradients in the level of confinement. Tight spaces may serve as an additional, crucial cue for bacteria while they navigate complex environments to enter specific habitats.


Assuntos
Espaços Confinados , Natação , Aliivibrio fischeri/fisiologia , Animais , Decapodiformes/microbiologia , Decapodiformes/fisiologia , Simbiose/fisiologia
16.
Front Microbiol ; 13: 854355, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35300477

RESUMO

Planktonic cells of the luminous marine bacterium Vibrio fischeri establish themselves in the light-emitting organ of each generation of newly hatched Euprymna scolopes bobtail squid. A symbiont population is maintained within the 6 separated crypts of the organ for the ∼9-month life of the host. In the wild, the initial colonization step is typically accomplished by a handful of planktonic V. fischeri cells, leading to a species-specific, but often multi-strain, symbiont population. Within a few hours, the inoculating cells proliferate within the organ's individual crypts, after which there is evidently no supernumerary colonization. Nevertheless, every day at dawn, the majority of the symbionts is expelled, and the regrowth of the remaining ∼5% of cells provides a daily opportunity for the population to evolve and diverge, thereby increasing its genomic diversity. To begin to understand the extent of this diversification, we characterized the light-organ population of an adult animal. First, we used 16S sequencing to determine that species in the V. fischeri clade were essentially the only ones detectable within a field-caught E. scolopes. Efforts to colonize the host with a minor species that appeared to be identified, V. litoralis, revealed that, although some cells could be imaged within the organ, they were <0.1% of the typical V. fischeri population, and did not persist. Next, we determined the genome sequences of seventy-two isolates from one side of the organ. While all these isolates were associated with one of three clusters of V. fischeri strains, there was considerable genomic diversity within this natural symbiotic population. Comparative analyses revealed a significant difference in both the number and the presence/absence of genes within each cluster; in contrast, there was little accumulation of single-nucleotide polymorphisms. These data suggest that, in nature, the light organ is colonized by a small number of V. fischeri strains that can undergo significant genetic diversification, including by horizontal-gene transfer, over the course of ∼1500 generations of growth in the organ. When the resulting population of symbionts is expelled into seawater, its genomic mix provides the genetic basis for selection during the subsequent environmental dispersal, and transmission to the next host.

18.
Nat Microbiol ; 7(3): 347-348, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35246652
19.
mSystems ; 6(5): e0086721, 2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34581595

RESUMO

Symbiosis, by its basic nature, depends on partner interactions that are mediated by cues and signals. This kind of critical reciprocal communication shapes the trajectory of host-microbe associations from their onset through their maturation and is typically mediated by both biochemical and biomechanical influences. Symbiotic partnerships often involve communities composed of dozens to hundreds of microbial species, for which resolving the precise nature of these partner interactions is highly challenging. Naturally occurring binary associations, such as those between certain legumes, nematodes, fishes, and squids, and their specific bacterial partner species offer the opportunity to examine interactions with high resolution and at the scale at which the interactions occur. The goals of this review are to provide the conceptual framework for evolutionarily conserved drivers of host-symbiont communication in animal associations and to offer a window into some mechanisms of this phenomenon as discovered through the study of the squid-vibrio model. The discussion focuses upon the early events that lead to persistence of the symbiotic partnership. The biophysical and biochemical determinants of the initial hours of dialogue between partners and how the symbiosis is shaped by the environment that is created by their reciprocal interactions are key topics that have been difficult to approach in more complex systems. Through our research on the squid-vibrio system, we provide insight into the intricate temporal and spatial complexity that underlies the molecular and cellular events mediating successful microbial colonization of the host animal.

20.
Cell Metab ; 33(8): 1514-1515, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34348097

RESUMO

Research of animal microbiomes is demonstrating that these host-microbe partnerships are on a profound circadian rhythm. Recently in Cell, Brooks et al. (2021) report that host rhythms drive behaviors of specific microbiome members, which orchestrate a coordination of the innate immune system with the circadian clock.


Assuntos
Relógios Circadianos , Microbiota , Corrida , Animais , Ritmo Circadiano , Sistema Imunitário
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...